Abstract

We compute the Brauer group of the moduli stack of elliptic curves over the integers, localizations of the integers, finite fields of odd characteristic, and algebraically closed fields of characteristic not $2$. The methods involved include the use of the parameter space of Legendre curves and the moduli stack of curves with full (naive) level $2$ structure, the study of the descent spectral sequence in \'etale cohomology and the Leray spectral sequence in fppf cohomology, the computation of the group cohomology of $S_3$ in a certain integral representation, the classification of cubic Galois extensions of the field of rational numbers, the computation of Hilbert symbols in the ramified case for the primes $2$ and $3$, and finding $p$-adic elliptic curves with specified properties.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.