Abstract

The branching diffusion with immigration is studied. Under general branching and diffusion laws, the process is shown to be mixing, according to Brillinger's definition. Brillinger's central limit theorem for spatially homogeneous mixing processes is generalized to prove that, under a renormalization transformation, the distribution of the branching diffusion with immigration converges to a completely random Gaussian random measure. In addition, the existence of a steady-state distribution is proven in the case of subcritical branching, and this distribution is shown to be mixing. Hence the steady-state random field also obeys a spatial central limit theorem.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.