Abstract

The cytoskeleton is crucial for defining neuronal-type-specific dendrite morphologies. To explore how the complex interplay of actin-modulatory proteins (AMPs) can define neuronal types invivo, we focused on the class III dendritic arborization (c3da) neuron of Drosophila larvae. Using computational modeling, we reveal that the main branches (MBs) of c3da neurons follow general models based on optimal wiring principles, while the actin-enriched short terminal branches (STBs) require an additional growth program. To clarify the cellular mechanisms that define this second step, we thus concentrated on STBs for an in-depth quantitative description of dendrite morphology and dynamics. Applying these methods systematically to mutants of six known and novel AMPs, we revealed the complementary roles of these individual AMPs in defining STB properties. Our data suggest that diverse dendrite arbors result from a combination of optimal-wiring-related growth and individualized growth programs that are neuron-type specific.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.