Abstract

Branched-chain amino acid transaminases (BCATs) play a crucial role in the metabolism of leucine, isoleucine, and valine. They catalyze the last step of the synthesis and/or the initial step of the degradation of this class of amino acids. In Arabidopsis, seven putative BCAT genes are identified by their similarity to their counterparts from other organisms. We have now cloned the respective cDNA sequences of six of these genes. The deduced amino acid sequences show between 47.5% and 84.1% identity to each other and about 30% to the homologous enzymes from yeast (Saccharomyces cerevisiae) and mammals. In addition, many amino acids in crucial positions as determined by crystallographic analyses of BCATs from Escherichia coli and human (Homo sapiens) are conserved in the AtBCATs. Complementation of a yeast Deltabat1/Deltabat2 double knockout strain revealed that five AtBCATs can function as BCATs in vivo. Transient expression of BCAT:green fluorescent protein fusion proteins in tobacco (Nicotiana tabacum) protoplasts shows that three isoenzymes are imported into chloroplasts (AtBCAT-2, -3, and -5), whereas a single enzyme is directed into mitochondria (AtBCAT-1).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.