Abstract
Copper-based brake pads have played a pivotal role in the braking systems of commercial high-speed trains travelling at speeds ranging from 200 to 350 km/h. In this study, the braking performance and friction and wear mechanism of copper-based brake pads at 400 km/h were further evaluated using a full-scale dynamometer. The results show that under repeated emergency braking conditions at 400 km/h, the mean friction coefficient can be maintained at about 0.3 and remains stable within six braking cycles. Subsequently, a fade phenomenon in the mean friction coefficient emerges accompanied by a significant increase in braking distance, while the mean wear loss is relatively high throughout the entire testing process. Microstructural characteristics of the friction film and matrix indicate that strong oxidation plays an important role in the failure process of the brake pads. The friction film primarily composed of oxides exhibits numerous defects, which are susceptible to peeling off during braking, thereby compromising wear resistance. Additionally, as the braking cycles accumulate, oxidation gradually invades and weakens the matrix, leading to violent migration of the copper-rich friction film across the friction interfaces and resulting in the deterioration of friction performance. This work provides valuable insights into the failure behavior of copper-based brake pads at higher braking speeds and can provide potential direction for further improving their performance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.