Abstract

Rhythmic gene expression is found throughout the central nervous system. This harmonized regulation can be dependent on- and independent of- the master regulator of biological clocks, the suprachiasmatic nucleus (SCN). Substantial oscillatory activity in the brain's reward system is regulated by dopamine. While light serves as a primary time-giver (zeitgeber) of physiological clocks and synchronizes biological rhythms in 24-h cycles, nonphotic stimuli have a profound influence over circadian biology. Indeed, reward-related activities (e.g., feeding, exercise, sex, substance use, and social interactions), which lead to an elevated level of dopamine, alters rhythms in the SCN and the brain's reward system. In this chapter, we will discuss the influence of the dopaminergic reward pathways on circadian system and the implication of this interplay on human health.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.