Abstract

BackgroundWhile a number of neuroanatomical studies in other malacostracan taxa have recently contributed to the reconstruction of the malacostracan ground pattern, little is known about the nervous system in the three enigmatic blind groups of peracarids from relict habitats, Thermosbaenacea, Spelaeogriphacea, and Mictocarididae. This first detailed description of the brain in a representative of each taxon is largely based on a combination of serial semi-thin sectioning and computer-aided 3D-reconstructions. In addition, the mictocaridid Mictocaris halope was studied with a combination of immunolabeling (tubulin, nuclear counter-stains) and confocal laser scanning microscopy, addressing also the ventral nerve cord.ResultsAdjacent to the terminal medulla, all three representatives exhibit a distal protocerebral neuropil, which is reminiscent of the lobula in other Malacostraca, but also allows for an alternative interpretation in M. halope and the thermosbaenacean Tethysbaena argentarii. A central complex occurs in all three taxa, most distinctively in the spelaeogriphacean Spelaeogriphus lepidops. The deutocerebral olfactory lobe in M. halope and S. lepidops is large. The comparably smaller olfactory lobe in T. argentarii appears to be associated with a unique additional deutocerebral neuropil. A small hemiellipsoid body exists only in the protocerebrum of T. argentarii. Distinctive mechanosensory neuropils corresponding to other malacostracans are missing.ConclusionsThe considerable reduction of the optic lobe in the studied taxa is higher than in any other blind malacostracan. The large size of deutocerebral olfactory centers implies an important role of the olfactory sense. The presence of a distinctive central complex in the blind S. lepidops adds further support to a central-coordinating over a visual function of this structure. The lack of a hemiellipsoid body in M. halope and S. lepidops suggests that their terminal medulla takes over the function of a second order olfactory center completely, as in some other peracarids. The reduction of the optic lobe and hemiellipsoid body is suggested to have occurred several times independently within Peracarida. The missing optic sense in the studied taxa is not correlated with an emphasized mechanosense.

Highlights

  • While a number of neuroanatomical studies in other malacostracan taxa have recently contributed to the reconstruction of the malacostracan ground pattern, little is known about the nervous system in the three enigmatic blind groups of peracarids from relict habitats, Thermosbaenacea, Spelaeogriphacea, and Mictocarididae

  • We refer to somata in six different brain regions, applying a simple nomenclature schematically explained in Figure 2A: anterolateral somata (AlS) surround the optic lobes and the lateral protocerebrum; anterodorsal somata (AdS) lie dorsally in the median protocerebrum; anteroventral somata (AvS) lie ventrally in the median protocerebrum; lateral somata (LS) lie laterally in the deutocerebrum; ventromedial somata (VmS) lie ventrally in the deutocerebrum; posterior somata (PS) lie laterally and dorsally in the tritocerebrum

  • While the distal protocerebral neuropil in S. lepidops is best interpreted as the lobula, an alternative interpretation is possible in M. halope and T. argentarii

Read more

Summary

Introduction

While a number of neuroanatomical studies in other malacostracan taxa have recently contributed to the reconstruction of the malacostracan ground pattern, little is known about the nervous system in the three enigmatic blind groups of peracarids from relict habitats, Thermosbaenacea, Spelaeogriphacea, and Mictocarididae. This first detailed description of the brain in a representative of each taxon is largely based on a combination of serial semi-thin sectioning and computer-aided 3D-reconstructions. Apart from a few overviews of the brain in MST [35,36], these peracarid taxa have not been investigated so far

Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.