Abstract

Background. A large number of neurological disorders (neurodegenerative, neurodevelopmental or trauma induced) are difficult to diagnose or assess, thus limiting treatment efficacy. Existing solutions and products for this need are costly, extremely slow, often invasive, and in many cases fail to definitively (and quantitatively) diagnose or assess treatment. 
 Advances. For the past decade, we have been developing what we consider to be an innovative low-cost sensory testing device (the Brain Gauge) that non-invasively assesses the central nervous system (CNS). The objective has been to develop an inexpensive, highly accurate, simple to use device to assess brain health in all environments: in the clinic, at home, at work, on the battlefield or sports field. The device is non-invasive, generates no harmful radiation, requires no chemicals nor exposure to dangerous substances. The device does not require expensive disposables and does not involve the use of samples that require physical processing in a central laboratory. Tests can be administered in a matter of minutes and do not require expert oversight. The most recent versions of the technology are easily portable; the device is the size and shape of a computer mouse. As such, the technology is particularly well suited to non-drug, non-radiation based alternative and in-home care. The device and methods have been used in numerous studies of neurological cohorts that are often considered difficult to diagnose or assess objectively. Based on over a decade of studies (currently an ontological database of over 10,000 subjects and over 60 peer reviewed publications), the system can be used to enable clinicians to have a much better view of a patient’s CNS health status. The diagnostic system delivers a battery of sensory based (tactile) tests that are conducted rapidly – much like an eye exam with verbal feedback – and the tests were designed to be predominantly impacted by specific mechanisms of CNS information processing. Because of the broad diversity of the questions addressed by the different metrics, combining the metrics allows for the generation of a unique individual CNS profile that appears to be very sensitive to neurological status. 
 Outlook. A review of the development of the system and the application of the method in basic and clinical research is provided to give readers an insight into why the methods were developed, how the methods work and what the methods can be optimally utilized for. The methods provide an objective means for clinicians and researchers to track brain health, and examples of case studies of tracking recovery from concussion as well as response to treatments are provided.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.