Abstract

The brain 3β-hydroxysteroid dehydrogenase (3β-HSD), is the enzyme that catalyzes the biosynthesis of a neuroprotective factor, progesterone. The regulation of 3β-HSD in response to stress exposure in the cuprizone-induced model of Multiple Sclerosis was investigated and the reaction related to the demyelination extremity. 32 female Wistar rats divided into four groups (i.e., control group (Cont), non-stress cuprizone treated (N-CPZ), physical stress- cuprizone treated (P-CPZ) and emotional stress- cuprizone treated (E-CPZ). A witness foot-shock model used to induce background stress for 5 days. An elevated-plus maze applied to validate the stress induction. Followed by 6 weeks of cuprizone treatment, the Y-maze test performed to confirm brain demyelination. 3β-HSD gene expression as an indicator of progesterone synthesis examined. At the behavioral level, both stressed groups reflected more impaired spatial memory compared to the N-CPZ group (p < 0.01), with more severe results in the E-CPZ group (p < 0.01). The results of mRNA expression of 3β-HSD illustrated significant elevation in all cuprizone treated groups (p < 0.001) with a higher up-regulation (p < 0.001) in the E-CPZ group. Background stress -particularly emotional type- exacerbates the demyelination caused by cuprizone treatment. The brain up-regulates the 3β-HSD gene expression as a protective response relative to the myelin degradation extent.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call