Abstract

AbstractLet k be a field, let k* = k \ {0} and let C2 be a cyclic group of order 2. We compute all of the braided monoidal structures on the category of k-vector spaces graded by the Klein group C2 × C2. For the monoidal structures we compute the explicit form of the 3-cocycles on C2 × C2 with coefficients in k*, while, for the braided monoidal structures, we compute the explicit form of the abelian 3-cocycles on C2 × C2 with coefficients in k*. In particular, this will allow us to produce examples of quasi-Hopf algebras and weak braided Hopf algebras with underlying vector space k[C2 × C2].

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.