Abstract

The ai5γ group II intron requires a protein cofactor to facilitate native folding in the cell. Yeast protein Mss116 greatly accelerates intron folding under near-physiological conditions both in vivo and in vitro. Although the effect of Mss116 on the kinetics of ai5γ ribozyme folding and catalysis has been extensively studied, the precise structural role and interaction sites of Mss116 have been elusive. Using Nucleotide Analog Interference Mapping to study the folding of splicing precursor constructs, we have identified specific intron functional groups that participate in Mss116-facilitated folding and we have determined their role in the folding mechanism. The data indicate that Mss116 stabilizes an early, obligate folding intermediate within intron domain 1, thereby laying the foundation for productive folding to the native state. In addition, the data reveal an important role for the IBS2 exon sequence and for the terminus of domain 6, during the folding of self-splicing group IIB intron constructs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.