Abstract
The three-dimensional axisymmetric Boussinesq problem of an isotropic half-space subjected to a concentrated normal quasi-static load is studied within the framework of linear dipolar gradient elasticity. Our main concern is to determine possible deviations from the predictions of classical linear elastostatics when a more refined theory is employed to attack the problem. Of special importance is the behavior of the new solution near to the point of application of the load where pathological singularities exist in the classical solution. The use of the theory of gradient elasticity is intended here to model the response of materials with microstructure in a manner that the classical theory cannot afford. A linear version of this theory results by considering a linear isotropic expression for the strain-energy density that depends on strain-gradient terms, in addition to the standard strain terms appearing in classical elasticity. Through this formulation, a microstructural material constant is introduced, in addition to the standard Lam\'e constants. The solution method is based on integral transforms and is exact. The present results show significant departure from the predictions of classical elasticity. Indeed, continuous and bounded displacements are predicted at the points of application of the concentrated load. Such a behavior of the displacement field is, of course, more natural than the singular behavior exhibited in the classical solution.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.