Abstract
We show the existence of Yang--Mills--Higgs (YMH) fields over a Riemann surface with boundary where a free boundary condition is imposed on the section and a Neumann boundary condition on the connection. In technical terms, we study the convergence and blow-up behavior of a sequence of Sacks-Uhlenbeck type $\alpha$-YMH fields as $\alpha\to 1$. For $\alpha>1$, each $\alpha$-YMH field is shown to be smooth up to the boundary under some gauge transformation. This is achieved by showing a regularity theorem for more general coupled systems, which extends the classical results of Ladyzhenskaya-Ural'ceva and Morrey.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Calculus of Variations and Partial Differential Equations
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.