Abstract

We study the problem with boundary conditions of the first and second kind on the boundary of a rectangular domain for an equation with two internal perpendicular lines of change of a type. With the use of the spectral method we prove the unique solvability of the mentioned problem. The eigenvalue problem for an ordinary differential equation obtained by separation of variables is not self-adjoint, and the system of root functions is not orthogonal. We construct the corresponding biorthogonal system of functions and prove its completeness. This allows us to establish a criterion for the uniqueness of the solution to the problem under consideration. We construct the solution as the sum of the biorthogonal series.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.