Abstract

The flow of a plasma with different component temperatures in the boundary layers at the electrodes of an MHD channel is investigated without any assumptions as to self-similarity. For the calculation of the electron temperature, the full energy equation for an electron gas [1] is solved with allowance for the estimates given in [2]. In contrast to [3, 4], the calculation includes the change in temperature of electrons and ions along the channel caused by the collective transport of energy, the work done by the partial pressure forces, and the Joule heating and the energy exchange between the components. The problem of the boundary layers in the flow of a two-temperature, partially ionized plasma past an electrode is solved in simplified form by the local similarity method in [5–7]. In these papers, either the Kerrebrock equation is used [5, 6] or the collective terms are omitted from the electron energy equation [7].

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.