Abstract
PurposeThis study aims to apply a numerical meshless method, namely, the boundary knot method (BKM) combined with the meshless analog equation method (MAEM) in space and use a semi-implicit scheme in time for finding a new numerical solution of the advection–reaction–diffusion and reaction–diffusion systems in two-dimensional spaces, which arise in biology.Design/methodology/approachFirst, the BKM is applied to approximate the spatial variables of the studied mathematical models. Then, this study derives fully discrete scheme of the studied models using a semi-implicit scheme based on Crank–Nicolson idea, which gives a linear system of algebraic equations with a non-square matrix per time step that is solved by the singular value decomposition. The proposed approach approximates the solution of a given partial differential equation using particular and homogeneous solutions and without considering the fundamental solutions of the proposed equations.FindingsThis study reports some numerical simulations for showing the ability of the presented technique in solving the studied mathematical models arising in biology. The obtained results by the developed numerical scheme are in good agreement with the results reported in the literature. Besides, a simulation of the proposed model is done on buttery shape domain in two-dimensional space.Originality/valueThis study develops the BKM combined with MAEM for solving the coupled systems of (advection) reaction–diffusion equations in two-dimensional spaces. Besides, it does not need the fundamental solution of the mathematical models studied here, which omits any difficulties.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Numerical Methods for Heat & Fluid Flow
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.