Abstract
For two-dimensional distributed control systems governed by the Laplace equation, the boundary element method is an efficient numerical method to solve problems whose quadratic cost involves boundary integrals only. In this paper we formulate a duality-boundary integral equation scheme and use piecewise constant boundary elements to approximate the problem. This method involves discretization of the boundary curve only and it can conveniently handle the compatibility constraint due to the Neumann data. Convergence and optimal error estimates O ( h ) \mathcal {O}(h) have been proved. Numerical data for the case of a disk are computed to illustrate the theory.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.