Abstract
This work presents a formulation for thick plates following Mindlin theory. The fundamental solution takes into account an assumed displacement distribution on the thickness, and was derived by means of Hormander operator and the Radon transform. To compute the inverse Radon transform of the fundamental solution, some numerical integrals need to be computed. How these integrations are carried out is a key point in the performance of the boundary element code. Two approaches to integrate fundamental solutions are discussed. Integral equations are obtained using Betti's reciprocal theorem. Domain integrals are exactly transformed into boundary integrals by the radial integration technique.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.