Abstract

The boundary element-linear complementarity method for solving the Laplacian Signorini problem is presented in this paper. Both Green's formula and the fundamental solution of the Laplace equation have been used to solve the boundary integral equation. By imposing the Signorini constraints of the potential and its normal derivative on the boundary, the discrete integral equation can be written into a standard linear complementarity problem (LCP). In the LCP, the unique variable to be affected by the Signorini boundary constraints is the boundary potential variable. A projected successive over-relaxation (PSOR) iterative method is employed to solve the LCP, and some numerical results are presented to illustrate the efficiency of this method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.