Abstract

BackgroundThe analysis of connectivity has become a fundamental tool in human neuroscience. Granger Causality Mapping is a data-driven method that uses Granger Causality (GC) to assess the existence and direction of influence between signals, based on temporal precedence of information. More recently, a theory of Granger causality has been developed for state-space (SS-GC) processes, but little is known about its statistical validation and application on functional magnetic resonance imaging (fMRI) data. New methodWe explored different multivariate computational frameworks to define the optimal combination for GC estimation. We hypothesized a new heuristic, combining SS-GC with a distinct statistical validation technique, Time Reversed Testing, validating it on synthetic data. We test its performance with a number of experimental parameters, including block structure, sampling frequency, noise and system mean pairwise correlation, using a statistical framework of binary classification. ResultsWe found that SS-GC with time reversed testing outperforms other frameworks. The results validate the application of SS-GC to generative models. When estimating reliable causal relations, SS-GC returns promising results, especially when considering synthetic data with a high impact of noise and sampling rate. ConclusionsIn this study, we empirically explored the boundaries of SS-GC with time reversed testing, a data-driven causality analysis framework with potential applicability to fMRI data.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call