Abstract

The anisotropic galaxy 2-point correlation function (2PCF) allows measurement of the growth of large-scale structures from the effect of peculiar velocities on the clustering pattern. We present new measurements of the auto- and cross- correlation function multipoles of 69,180 WiggleZ and 46,380 BOSS-CMASS galaxies sharing an overlapping volume of ~0.2 (Gpc/h)^3. Analysing the redshift-space distortions (RSD) of galaxy 2-point statistics for these two galaxy tracers, we test for systematic errors in the modelling depending on galaxy type and investigate potential improvements in cosmological constraints. We build a large number of mock galaxy catalogues to examine the limits of different RSD models in terms of fitting scales and galaxy type, and to study the covariance of the measurements when performing joint fits. For the galaxy data, fitting the monopole and quadrupole of the WiggleZ 2PCF on scales 24<s<80 Mpc/h produces a measurement of the normalised growth rate $f\sigma_8$(z=0.54)=0.409$\pm$0.059, whereas for the CMASS galaxies we found a consistent constraint of $f\sigma_8$(z=0.54)=0.466$\pm$0.074. When combining the measurements, accounting for the correlation between the two surveys, we obtain $f\sigma_8$(z=0.54)=0.413$\pm$0.054, in agreement with the LCDM-GR model of structure growth and with other survey measurements.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.