Abstract
The heterocyclic rings containing B, C and N atoms, also known as azaborines, are systematically studied. The electronic properties of these BCN rings are explored by using second order perturbation theory and their aromaticity is discussed by the nucleus independent chemical shifts. These heterocyclic rings are found to be chemically more reactive than benzene and borazine, due to smaller HOMO–LUMO gap and non-zero dipole moment. However, the aromaticity of these BCN rings is less than benzene but two or three times that of borazine.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.