Abstract

We study false vacuum decays catalysed by metastable magnetic monopoles which act as tunnelling sites with exponentially enhanced decay rates. Metastable monopoles are configurations where the monopole core is in the true vacuum of the scalar potential. The field profiles describing the decay do not have the typically assumed O(3)/O(4)O(3)/O(4) symmetry, thus requiring an extension of the usual decay rate calculation. To numerically determine the saddle point solutions which describe the tunnelling process we use a new algorithm based on the mountain pass theorem. This method can be applied more widely to phase transitions with reduced symmetry, such as decays away from the zero and infinite temperature limits. In our setup monopole-catalysed tunnelling can dominate over the homogeneous false vacuum decay for a wide range of parameters, significantly modify the gravitational wave signal or trigger phase transitions which would otherwise never complete. A single boring monopole in our Hubble patch may determine the lifetime of our current vacuum.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.