Abstract

The Yarowsky bootstrapping algorithm resolves the homograph-level word sense disambiguation (WSD) problem, which is the sense granularity level required for real natural language processing (NLP) applications. At the same time it resolves the knowledge acquisition bottleneck problem affecting most WSD algorithms and can be easily applied to foreign language corpora. However, this paper shows that the Yarowsky algorithm is significantly less accurate when applied to domain fluctuating, real corpora. This paper also introduces a new bootstrapping methodology that performs much better when applied to these corpora. The accuracy achieved in non-domain fluctuating corpora is not reached due to inherent domain fluctuation ambiguities.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.