Abstract

Let G be a graph on n vertices and m edges. The book crossing number of G is defined as the minimum number of edge crossings when the vertices of G are placed on the spine of a k-page book and edges are drawn on pages, such that each edge is contained by one page. Our main results are two polynomial time algorithms to generate near optimal drawing of G on books. The first algorithm give an O(log2n) times optimal solution, on small number of pages, under some restrictions. This algorithm also gives rise to the first polynomial time algorithm for approximating the rectilinear crossing number so that the coordinates of vertices in the plane are small integers, thus resolving a recent open question concerning the rectilinear crossing number. Moreover, using this algorithm we improve the best known upper bounds on the rectilinear crossing number. The second algorithm generates a drawing of G with O(m2/k2) crossings on k pages. This is within a constant multiplicative factor from our general lower bound of Ω(m3/n2k2), provided that m = Ψ(n2). © 1996 John Wiley & Sons, Inc.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.