Abstract

Osseointegration of dental implants occurs on a hierarchy of length scales down to the atomic level. A deeper understanding of the complex processes that take place at the surface of an implant on the smallest scale is of interest for the development of improved biomaterials. To date, transmission electron microscopy (TEM) has been utilized for examination of the bone-implant interface, providing details on the nanometer level. In this study we show that TEM imaging can be complemented with atom probe tomography (APT) to reveal the chemical composition of a Ti-based dental implant in a human jaw on the atomic level of resolution. Correlative microscopy ensures the accuracy of APT reconstructions and helps provide both chemical and structural information of the bone-implant interface on the smallest of length scales.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call