Abstract

BackgroundDiabetic peripheral neuropathy, a common complication of diabetic mellitus, has brought a threaten on patients’ health. The bone marrow-derived mesenchymal stem cells (BMSCs) were reported to play an important role in diverse diseases. Nevertheless, the specific function of BMSCs in diabetic peripheral neuropathy remained uncharacterized. MethodsA wide range of experiments including RT-qPCR, western blot, H&E staining, oxidative stress assessment, measurement of thermal sensitivity, ELISA, urine protein and CCK-8 assays were implemented to explore the function and mechanism of BMSCs in vivo and vitro. ResultsThe experimental results displayed that BMSCs improve STZ-induced diabetes symptoms in rats by decreasing blood glucose and urinary protein. Functionally, BMSCs ameliorate oxidative stress, painful diabetic neuropathy, neurotrophic status and angiogenesis in STZ-induced rats. Moreover, BMSCs participate in the regulation of sciatic neuro morphology in diabetic neuropathy rat model. In mechanism, BMSCs alleviate diabetic peripheral neuropathy via activating GSK-3β/β-catenin signaling pathway in rats and improve Schwann's cells viability by activating GSK-3β/β-catenin signaling pathway under high glucose. ConclusionsWe verified that BMSCs alleviate diabetic peripheral neuropathy of rats induced by STZ via activating GSK-3β/β-catenin signaling pathway, which implied a novel biomarker for diabetic peripheral neuropathy treatment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call