Abstract
The classical BCR-ABL-negative Myeloproliferative Neoplasms (MPN) are a group of heterogeneous haematological diseases characterized by constitutive JAK-STAT pathway activation. Targeted therapy with Ruxolitinib, a JAK1/2-specific inhibitor, achieves symptomatic improvement but does not eliminate the neoplastic clone. Similar effects are seen with histone deacetylase inhibitors (HDACi), albeit with poorer tolerance. Here, we show that bone marrow (BM) stromal cells (HS-5) protected MPN-derived cell lines (SET-2; HEL and UKE-1) and MPN patient-derived BM cells from the cytotoxic effects of Ruxolitinib and the HDACi Vorinostat. This protective effect was mediated, at least in part, by the secretion of soluble factors from the BM stroma. In addition, it correlated with the activation of signalling pathways important for cellular homeostasis, such as JAK-STAT, PI3K, JNK, MEK-ERK and NF-κB. Importantly, the pharmacological inhibition of JNK and PI3K pathways completely abrogated the BM protective effect on MPN cell lines and MPN patient samples. Our findings shed light on mechanisms of tumour survival and may indicate novel therapeutic approaches for the treatment of MPN.
Highlights
The classical BCR-ABL-negative myeloproliferative neoplasms (MPN) include Polycythaemia Vera (PV), Essential Thrombocytosis (ET) and Primary Myelofibrosis (PMF)
Despite protecting from apoptosis, co-culturing SET-2 cells with HS-5 did not abrogate the reported effects that Vorinostat has on gene expression, as shown by the up-regulation of histone deacetylase inhibitors (HDACi) transcriptional targets like CDKN1A [34], IER3 [33] and BIRC3 [37] (S2A Fig), nor the doi:10.1371/journal.pone.0143897.g001
Co-culture experiments using another bone marrow (BM) stromal cell line (KM-102) [31] confirmed the stromal cells’ protective effect on apoptosis of SET-2 cells induced by Vorinostat (S4A Fig) and Ruxolitinib (S4B Fig). These results demonstrate that BM stromal cells maintain MPN cellular viability in the presence of both Vorinostat and Ruxolitinib
Summary
The classical BCR-ABL-negative myeloproliferative neoplasms (MPN) include Polycythaemia Vera (PV), Essential Thrombocytosis (ET) and Primary Myelofibrosis (PMF). These conditions arise from a clonal defect on myeloid progenitor cells that lead to increased proliferation of erythroid and megakaryocytic precursors resulting in the excessive production of mature blood components [1, 2]. The major clinical complications associated with these disorders are thrombohemorrhagic events, hypercatabolic state, splenomegaly, and transformation to Acute Myeloid Leukaemia (AML) [3]. JNK and PI3K Activation Protect MPN Cells
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.