Abstract

We report that the bone marrow stroma-released LL-37, a member of the cathelicidin family of antimicrobial peptides, primes/increases responsiveness of murine and human hematopoietic stem/progenitor cells (HSPCs) to an α-chemokine stromal-derived factor-1 (SDF-1) gradient. Accordingly, LL-37 is upregulated in irradiated BM cells and enhances the chemotactic responsiveness of hematopoietic progenitors from all lineages to a low physiological SDF-1 gradient as well as increases their i) adhesiveness, ii) SDF-1-mediated actin polymerization, and iii) MAPKp42/44 phosphorylation. Mice transplanted with bone marrow (BM) cells ex vivo primed by LL-37 showed accelerated recovery of platelet and neutrophil counts by ~3–5 days compared to mice transplanted with unprimed control cells. These priming effects were not mediated by LL-37 binding to its receptor and depended instead on incorporation of the CXCR4 receptor into membrane lipid rafts. We propose that LL-37, which has primarily antimicrobial functions and is harmless to mammalian cells, could be clinically applied to accelerate engraftment as ex vivo priming agent for transplanted human HSPCs. This novel approach would be particularly important in cord blood transplantations, where the number of HSCs available is usually limited.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.