Abstract

PurposeTo define the bony attachments of the medial ligaments relative to anatomical and radiographic bony landmarks, providing information for medial collateral ligament (MCL) surgery.MethodThe femoral and tibial attachments of the superficial MCL (sMCL), deep MCL (dMCL) and posterior oblique ligament (POL), plus the medial epicondyle (ME) were defined by radiopaque staples in 22 knees. These were measured radiographically and optically; the precision was calculated and data normalised to the sizes of the condyles. Femoral locations were referenced to the ME and to Blumensaat’s line and the posterior cortex.ResultsThe femoral sMCL attachment enveloped the ME, centred 1 mm proximal to it, at 37 ± 2 mm (normalised at 53 ± 2%) posterior to the most-anterior condyle border. The femoral dMCL attachment was 6 mm (8%) distal and 5 mm (7%) posterior to the ME. The femoral POL attachment was 4 mm (5%) proximal and 11 mm (15%) posterior to the ME. The tibial sMCL attachment spread from 42 to 71 mm (81–137% of A-P plateau width) below the tibial plateau. The dMCL fanned out anterodistally to a wide tibial attachment 8 mm below the plateau and between 17 and 39 mm (33–76%) A-P. The POL attached 5 mm below the plateau, posterior to the dMCL. The 95% CI intra-observer was ± 0.6 mm, inter-observer ± 1.3 mm for digitisation. The inter-observer ICC for radiographs was 0.922.ConclusionThe bone attachments of the medial knee ligaments are located in relation to knee dimensions and osseous landmarks. These data facilitate repairs and reconstructions that can restore physiological laxity and stability patterns across the arc of knee flexion.

Highlights

  • The superficial medial collateral ligament, the deep medial collateral ligament and the posterior oblique ligament (POL)—a part of the posteromedial capsule (PMC)—are the medial ligamentous stabilisers of the knee against valgus and rotatory loads [2, 8, 10, 24, 32]

  • Surgery is indicated in high grade medial collateral ligament (MCL) injuries and when valgus instability persists in spite of conservative treatment [7, 11, 16, 19, 22] and with lesser degrees of laxity in combined ligament injury

  • All knees were free of osteoarthritis and ligaments and menisci were intact; this was confirmed by inspection during the dissection process

Read more

Summary

Introduction

The superficial medial collateral ligament (sMCL), the deep medial collateral ligament (dMCL) and the posterior oblique ligament (POL)—a part of the posteromedial capsule (PMC)—are the medial ligamentous stabilisers of the knee against valgus and rotatory loads [2, 8, 10, 24, 32]. The MCL is the most frequently injured ligament of the knee [1] and can mostly be treated non-surgically with good clinical results [6, 12, 14, 23]. Surgery is indicated in high grade MCL injuries and when valgus instability persists in spite of conservative treatment [7, 11, 16, 19, 22] and with lesser degrees of laxity in combined ligament injury. There are significant differences of isometry, or length-change behaviour, across the widths of each of the medial ligaments [34], so it is apparent that accurate positioning is important if the normal patterns of restraint are to be reproduced

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call