Abstract

The bond order of the ground electronic state of the carbon dimer has been analyzed in the light of natural orbital functional theory calculations carried out with an approximate, albeit strictly N-representable, energy functional. Three distinct solutions have been found from the Euler equations of the minimization of the energy functional with respect to the natural orbitals and their occupation numbers, which expand upon increasing values of the internuclear coordinate. In the close vicinity of the minimum energy region, two of the solutions compete around a discontinuity point. The former, corresponding to the absolute minimum energy, features two valence natural orbitals of each of the following symmetries, σ, σ*, π and π*, and has three bonding interactions and one antibonding interaction, which is very suggestive of a bond order large than two but smaller than three. The latter, features one σ-σ* linked pair of natural orbitals and three degenerate pseudo-bonding like orbitals, paired each with one triply degenerate pseudo-antibonding orbital, which points to a bond order larger than three. When correlation effects, other than Hartree-Fock for example, between the paired natural orbitals are accounted for, this second solution vanishes yielding a smooth continuous dissociation curve. Comparison of the vibrational energies and electron ionization energies, calculated on this curve, with their corresponding experimental marks, lend further support to a bond order for C2 intermediate between acetylene and ethylene.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call