Abstract
We study Deraux’s nonarithmetic orbifold ball quotient surfaces obtained as birational transformations of a quotient X of a particular Abelian surface A. Using the fact that A is the Jacobian of the Bolza genus 2 curve, we identify X as the weighted projective plane P(1,3,8). We compute the equation of the mirror M of the orbifold ball quotient (X,M), and by taking the quotient by an involution we obtain an orbifold ball quotient surface with mirror birational to an interesting configuration of plane curves of degrees 1, 2, and 3. We also exhibit an arrangement of four conics in the plane that provides the above-mentioned ball quotient orbifold surfaces.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.