Abstract

We study the Boltzmann equation with external forces, not necessarily deriving from a potential, in the incompressible Navier-Stokes perturbative regime. On the torus, we establish local-in-time, for any time, Cauchy theories that are independent of the Knudsen number in Sobolev spaces. The existence is proved around a time-dependent Maxwellian that behaves like the global equilibrium both as time grows and as the Knudsen number decreases. We combine hypocoercive properties of linearized Boltzmann operators with linearization around a time-dependent Maxwellian that catches the fluctuations of the characteristics trajec-tories due to the presence of the force. This uniform theory is sufficiently robust to derive the incompressible Navier-Stokes-Fourier system with an external force from the Boltzmann equation. Neither smallness, nor time-decaying assumption is required for the external force, nor a gradient form, and we deal with general hard potential and cutoff Boltzmann kernels. As a by-product the latest general theories for unit Knudsen number when the force is sufficiently small and decays in time are recovered.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.