Abstract

The Bohnenblust--Hille inequality says that the $\ell^{\frac{2m}{m+1}}$-norm of the coefficients of an $m$-homogeneous polynomial $P$ on $\C^n$ is bounded by $\| P\|_\infty$ times a constant independent of $n$, where $\|\cdot \|_\infty$ denotes the supremum norm on the polydisc $\D^n$. The main result of this paper is that this inequality is hypercontractive, i.e., the constant can be taken to be $C^m$ for some $C>1$. Combining this improved version of the Bohnenblust--Hille inequality with other results, we obtain the following: The Bohr radius for the polydisc $\D^n$ behaves asymptotically as $\sqrt{(\log n)/n}$ modulo a factor bounded away from 0 and infinity, and the Sidon constant for the set of frequencies $\bigl\{\log n: n \text{a positive integer} \le N\bigr\}$ is $\sqrt{N}\exp\{(-1/\sqrt{2}+o(1))\sqrt{\log N\log\log N}\}$ as $N\to \infty$.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.