Abstract
By generalizing Bogolyubov’s reduced description method, we suggest a formalism to derive kinetic equations for many-body dissipative systems in external stochastic field. As a starting point, we use a stochastic Liouville equation obtained from Hamilton’s equations taking dissipation and stochastic perturbations into account. The Liouville equation is then averaged over realizations of the stochastic field by an extension of the Furutsu-Novikov formula to the case of a non-Gaussian field. As the result, a generalization of the classical Bogolyubov-Born-Green-Kirkwood-Yvon (BBGKY) hierarchy is derived. In order to get a kinetic equation for the single-particle distribution function, we use a regular cutoff procedure of the BBGKY hierarchy by assuming weak interaction between the particles and weak intensity of the field. Within this approximation, we get the corresponding Fokker-Planck equation for the system in a non-Gaussian stochastic field. Two particular cases are discussed by assuming either Gaussian statistics of external perturbation or homogeneity of the system.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.