Abstract

Semantic knowledge is based on the way we perceive and interact with the world. However, the jury is still out on the question: to what degree are neuronal systems that subserve acquisition of semantic knowledge, such as sensory-motor networks, involved in its representation and processing? We will begin with a critical evaluation of the main behavioral and neuroimaging methods with respect to their capability to define the functional roles of specific brain areas. Any behavioral or neuroscientific measure is a conflation of representations and processes. Hence, a combination of behavioral and neurophysiological interactions as well as time-course information is required to define the functional roles of brain areas. This will guide our review of the empirical literature. Most research in this area has been done on semantics of concrete words, where clear theoretical frameworks for an involvement of sensory-motor systems in semantics exist. Most of this evidence still stems from correlational studies that are ambiguous with respect to the behavioral relevance of effects. Evidence for causal effects of sensory-motor systems on semantic processes is still scarce but evolving. Relatively few neuroscientific studies so far have investigated the embodiment of abstract semantics for words, numbers, and arithmetic facts. Here, some correlational evidence exists, but data on causality are mostly absent. We conclude that neuroimaging data, just as behavioral data, have so far not disentangled the fundamental link between process and representation. Future studies should therefore put more emphasis on the effects of task and context on semantic processing. Strong conclusions can only be drawn from a combination of methods that provide time-course information, determine the connectivity among poly- or amodal and sensory-motor areas, link behavioral with neuroimaging measures, and allow causal inferences. We will conclude with suggestions on how this could be accomplished in future research.

Highlights

  • It seems obvious that the way we interact with the world shapes the way we represent concepts and knowledge

  • We have reviewed the theoretical and methodological challenges that are faced by the neuroscientific investigation of embodied semantics

  • There are several theoretical approaches that plausibly accommodate a role of sensory-motor systems in semantic processing (Harnad, 1990; Barsalou, 1999; Pulvermüller, 2012), it remains a challenging empirical question to what degree cortical sensory-motor systems contribute to semantics in the fully developed brain

Read more

Summary

Introduction

It seems obvious that the way we interact with the world shapes the way we represent concepts and knowledge. In the neuroscience of semantics, the debate focuses mainly on the question as to what degree perceptual and motor systems of the brain contribute to semantic representations and processes (Barsalou et al, 2003; Fischer and Zwaan, 2008; Nazir et al, 2008; Knoeferle et al, 2010; Kiefer and Pulvermüller, 2011; Pulvermüller, 2012). Even in this relatively circumscribed research field, the views on the relevance of embodiment range from“strongly embodied”to“fully disembodied” (Meteyard et al, 2010). It is unlikely that there is a one-fits-all definition of embodiment, and we may find that sensory-motor systems contribute a lot to one aspect of cognition (e.g., semantics or mental imagery), but hardly at all to another (e.g., arithmetic problem solving)

Methods
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.