Abstract

Experimental data are combined with theoretical calculations to study the stability of the boat conformation of the pyrazabole ring. For the experimental studies, new BH2- and BF2-pyrazaboles disubstituted with iodo or ethynyl groups at the 2- and 6-positions have been prepared and structurally characterized. We have found different molecular structures and crystal packings depending on the substituents. The iodo derivatives have a bent molecular shape due to the boat conformation of the pyrazabole ring, and the molecules are arranged in stacks with the same conformation (all-up or all-down boat conformation) along the crystallographic b axis. Stacks of molecules with the same conformation interact in a plane by means of iodo−iodo short contacts. However, the ethynyl derivatives are formed by bent-shaped molecules for BH2 and planar structures for BF2. Density functional theory and ab initio calculations have been performed on these compounds and on unsubstituted analogues to understand the effect of subs...

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.