Abstract

The transport of opioid analgesics across the blood-brain barrier (BBB) is an important determinant of their therapeutic effects. The human brain is protected by the BBB, which consists of brain capillary endothelial cells linked with tight junctions. It is well established that the polarized expression of numerous transporters and receptors at the brain capillary endothelial cells controls the blood-brain exchange of nutrients, waste products deriving from neurotransmitter substances, and drugs. Morphine is a substrate of P-glycoprotein and the P-glycoprotein-mediated efflux transport at the BBB maintains a lower unbound concentration of morphine in the brain compared with plasma. On the other hand, oxycodone has 3 times higher unbound concentration in the brain than plasma, suggesting an active transport mechanism of oxycodone across the BBB into the brain. In vitro transport study using BBB model cells showed that oxycodone is efficiently transported by a proton-coupled organic cation antiporter. Human BBB model cells also retain the proton-coupled organic cation antiporter. Although adjuvant analgesics include many cationic drugs that interact with oxycodone transport across the BBB at relatively high concentrations, these drugs would enhance the antinociceptive effects of oxycodone with little effect on oxycodone pharmacokinetics, including brain distribution at therapeutically or pharmacologically relevant concentrations. These findings support the idea that proton-coupled organic cation antiporter-mediated transport of oxycodone at the BBB plays a role in determining the therapeutic efficacy of this opioid analgesic drug.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call