Abstract

Intercellular junctions between Sertoli cells in the toad testis were studied by freeze-fracture and electron-opaque intercellular markers. These junctional specializations are characterized in thin sections by a series of focal fusions on the outer leaflets of both adjacent cell plasmalemmas, associated with bundles of fine filaments in the subjacent Sertoli cell cytoplasms. However, the wide subsurface cisterna of the endoplasmic reticulum, a component constantly associated with Sertoli cell junctions in mammals, is absent in the toad. The intravascularly injected lanthanum hydroxide, used as a tracer compound, gains access to the seminiferous tubules and surrounds spermatogonia and leptotene spermatocytes, but is persistently excluded from germ cells in later stages of development. This indicates that, as is the case in the mammalian testis, a permeability barrier to lanthanum is established which isolates all germ cells beyond leptotene spermatocytes. Freeze-fracture reveals the characteristic occluding junctions between Sertoli cells, but a variation in their geometric patterns was clearly observed in different regions of the toad seminiferous epithelium. The membrane-fractured faces of Sertoli cells embracing differentiating spermatids exhibit a deep junctional complex: up to 50 rows of particles between adjacent Sertoli cells separate these late germ cells from the periphery of the seminiferous tubules. Sertoli cells surrounding early germ cells generally exhibit, instead, a discontinuous, poorly developed network of interconnected rows of particles with few widely spaced strands. This seems to permit the percolation of the intercellular marker in areas of the seminiferous epithelium containing spermatogonia and leptotene spermatocytes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call