Abstract

Aims: The aim of this study was to determine whether calpain is involved in Cl<sup>-</sup> -induced myocardial ischemia/reperfusion (I/R) injury. Methods: Isolated rat hearts were subjected to either 45 min of global no-flow ischemia followed by reperfusion or successive perfusion with Ca<sup>2+</sup> -free KH solution for 3 min and normal KH solution for 30 min, also known as Ca<sup>2+</sup> paradox. Results: The hearts in the I/R group exhibited increases in myocardial injury area, LDH release, caspase 3 activity and apoptotic indices and a marked decline in cardiac performance. As was the case regarding the effects of MDL 28170, an inhibitor of calpain, treatment with 5 µM NPPB, 5 µM DIDS and low Cl<sup>-</sup> significantly attenuated cardiac injury. Moreover, each of the treatments significantly protected against Ca<sup>2+</sup> overload-induced injury in the setting of Ca<sup>2+</sup> paradox. The Western blot and immunofluorescence data revealed that there was an increase in the percentages of calpain membrane-positive cells and the numbers of fragments resulting from the calpain-mediated proteolysis of α-fodrin in both the I/R and the Ca<sup>2+</sup> paradox, indicating that the activation of calpain occurred. More importantly, these effects were mitigated by the blockade of transmembrane Cl<sup>-</sup> flux, as was accomplished via MDL 28170. Conclusion: Our results provide evidence that the blockade of transmembrane Cl<sup>-</sup> flux mitigates I/R-induced cardiac injury via the inhibition of calpain activity. They also indicate that intracellular Ca<sup>2+</sup> overload regulates calpain activation in the setting of Cl<sup>-</sup> -induced injury.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call