Abstract

This paper examines the accounts of limit decision advanced by Hervaeus Natalis and Durand of St. Pourçain in their respective discussions of the sanctification of the Blessed Virgin. Hervaeus and Durand argue, against Aristotle, that the temporal limits of certain changes, including Mary’s sanctification, should be assigned in discrete rather than continuous time. The paper first considers Hervaeus’ discussion of limit decision and argues that, for Hervaeus, a solution of temporal limits in terms of discrete time can coexist with an Aristotelian continuous time solution because Hervaeus takes continuous and discrete time to be two non-intersecting, but correlated time-series. The paper next examines Durand’s account of limit decision and argues that Durand rejects Hervaeus’ correlation assumption as well as Aristotle’s continuous time solution.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.