Abstract

Through the mass balance and thermal balance calculation for a typical OxyCup (or OxiCup) furnace process featuring a capacity of 380 kt/a of steel plant residuals, the material flow and thermal flow diagrams were firstly obtained. Then, the performance of the main fuel in the OxyCup process, i.e. coke and carbon dust, was analyzed, and the results indicated that coke was mainly used as the stock column skeleton for the furnace and exothermal agent with a weak reduction ability; whereas carbon dust was mixed in the C-brick to reduce the iron oxide. In addition, the comparison between OxyCup process and traditional blast furnace process indicated that the reduction and melting processes in the OxyCup process were relatively isolated, while in the traditional blast furnace process, they were mixed with each other in the high temperature zone. Moreover, oxidizing atmosphere is necessary in part of the OxyCup furnaces to ensure the complete combustion of part of the coke, while only reducing atmosphere is allowed in traditional blast furnaces. Finally, it was confirmed that oxygen enrichment can make a remarkable increase of the energy income and high temperature blast makes only a small contribution to energy income as the energy from the combustion of carbon takes up nearly 90% of the total income.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.