Abstract
A theoretical study of the effect of variable fluid properties on the classical Blasius and Sakiadis flow is presented in this paper. The investigation concerns engine oil, water and air taking into account the variation of their physical properties with temperature. The results are obtained with the numerical simulation of the governing equations and cover large temperature differences. Velocity and temperature profiles are presented, as well as values of wall shear stress and wall heat transfer, for a variety of temperatures between the plate and the ambient fluid. It is found that the variation of fluid properties and especially viscosity have a strong influence on the results. The results of oil and water are, in general, similar and are generalized to liquids whereas air results are different and are generalized to gases. Except of the new results found in the present work some inaccurate results existing in the literature have been identified.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.