Abstract

Nitrogen-containing bisphosphonates (NBPs), compounds that are widely used in the treatment of bone disorders, may cause side effects related to endothelial dysfunction. The aim of our study was to investigate the effects of chronic 6-day exposure to two common bone-preserving drugs, alendronate and zoledronate, on endothelial function and oxidative metabolism of cultured human endothelial cells (EA.hy926). NBPs reduced cell viability, induced oxidative stress and a pro-inflammatory state and downregulated the prenylation-dependent ERK1/2 signaling pathway in endothelial cells. In addition, NBPs induced increased anaerobic respiration and slightly increased oxidative mitochondrial capacity, affecting mitochondrial turnover through reduced mitochondrial fission. Moreover, by blocking the mevalonate pathway, NBPs caused a significant decrease in the level of coenzyme Q10, thereby depriving endothelial cells of an important antioxidant and mitochondrial electron carrier. This resulted in increased formation of reactive oxygen species (ROS), upregulation of antioxidant enzymes, and impairment of mitochondrial respiratory function. A general decrease in mitochondrial respiration occurred with stronger reducing fuels (pyruvate and glutamate) in NBP-treated intact endothelial cells, and significantly reduced phosphorylating respiration was observed during the oxidation of succinate and especially malate in NBP-treated permeabilized endothelial cells. The observed changes in oxidative metabolism caused a decrease in ATP levels and an increase in oxygen levels in NBP-treated cells. Thus, NBPs modulate the energy metabolism of endothelial cells, leading to alterations in the cellular energy state, coenzyme Q10 redox balance, mitochondrial respiratory function, and mitochondrial turnover.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call