Abstract
We investigate the spatial distribution of the baryonic and non-baryonic mass components in a sample of 66 virialized systems. We have used X-ray measurements to determine the deprojected temperature and density structure of the intergalactic medium and have employed these to map the underlying gravitational potential. In addition, we have measured the deprojected spatial distribution of galaxy luminosity for a subset of this sample, spanning over 2 decades in mass. With this combined X-ray/optical study we examine the scaling properties of the baryons and address the issue of mass-to-light (M/L) ratio in groups and clusters of galaxies. We measure a median mass-to-light ratio of 224 h70 M/L (solar) in the rest frame B_j band, in good agreement with other measurements based on X-ray determined masses. There is no trend in M/L with X-ray temperature and no significant trend for mass to increase faster than luminosity: M \propto \L_{B,j}^{1.08 +/- 0.12}. This implied lack of significant variation in star formation efficiency suggests that gas cooling cannot be greatly enhanced in groups, unless it drops out to form baryonic dark matter. Correspondingly, our results indicate that non-gravitational heating must have played a significant role in establishing the observed departure from self-similarity in low mass systems. The median baryon fraction for our sample is 0.162 h70^{-3/2}, which allows us to place an upper limit on the cosmological matter density, Omega_m <= 0.27 h70^{-1}, in good agreement with the latest results from WMAP. We find evidence of a systematic trend towards higher central density concentration in the coolest haloes, indicative of an early formation epoch and consistent with hierarchical formation models.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.