Abstract

Nowadays, the concept of convex potential of dissipation is a powerful tool customarily used to model the constitutive dissipative laws. Unfortunately, it fails when applied to Coulomb's dry friction contact, which is shown in this paper by checking the cyclic monotony condition. Next, a new approach, the bipotential method, is presented and successfully applied to the contact law. This enables us to write it in a compact form and to uncover an implicit normality rule structure. The advantages of the new approach are numerous, among which is emphasized a pretty extension of the calculus of variation. Two minimum principles of the so-called bifunctional are presented for contact problems. Next, the bipotential method can be qualified as constitutive in the sense that it suggests improved numerical algorithms. In particular, it is proved that the complete contact law can be rewritten as a projection equation onto Coulomb's cone. Numerical examples show the feasibility of the algorithm and the computer time reduction with respect to other previous numerical approaches.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.