Abstract

The aim of this study was to assess the surgical use and applicability of a biportal bitransorbital approach. Single-portal transorbital and combined transorbital transnasal approaches have been used in clinical practice, but no study has assessed the surgical use and applicability of a biportal bitransorbital approach. Ten cadaver specimens underwent midline anterior subfrontal (ASub), bilateral transorbital microsurgery (bTMS), and bilateral transorbital neuroendoscopic surgery (bTONES) approaches. Morphometric analyses included the length of the bilateral cranial nerves I and II, the optic tract, and A1; the area of exposure of the anterior cranial fossa floor; craniocaudal and mediolateral angles of attack (AOAs); and volume of surgical freedom (VSF; maximal available working volume for a specific surgical corridor and surgical target structure normalized to a height of 10 mm) of the bilateral paraclinoid internal carotid arteries (ICAs), bilateral terminal ICAs, and anterior communicating artery (ACoA). Analyses were conducted to determine whether the biportal approach was associated with greater instrument freedom. The bTMS and bTONES approaches provided limited access to the bilateral A1 segments and the ACoA, which were inaccessible in 30% (bTMS) and 60% (bTONES) of exposures. The average total frontal lobe area of exposure (AOE) was 1648.4 mm2 (range 1516.6-1958.8 mm2) for ASub, 1658.9 mm2 (1274.6-1988.2 mm2) for bTMS, and 1914.9 mm2 (1834.2-2014.2 mm2) for bTONES exposures, with no statistically significant superiority between any of the 3 approaches (p = 0.28). The bTMS and bTONES approaches were significantly associated with decreases of 8.7 mm3 normalized volume (p = 0.005) and 14.3 mm3 normalized volume (p < 0.001) for VSF of the right paraclinoid ICA compared with the ASub approach. No statistically significant difference in surgical freedom was noted between all 3 approaches when targeting the bilateral terminal ICA. The bTONES approach was significantly associated with a decrease of 105% in the (log) VSF of the ACoA compared with the ASub (p = 0.009). Although the biportal approach is intended to improve maneuverability within these minimally invasive approaches, these results illustrate the pertinent issue of surgical corridor crowding and the importance of surgical trajectory planning. A biportal transorbital approach provides improved visualization but does not improve surgical freedom. Furthermore, although it affords impressive anterior cranial fossa AOE, it is unsuitable for addressing midline lesions because the preserved orbital rim restricts lateral movement. Further comparative studies will elucidate whether a combined transorbital transnasal route is preferable to minimize skull base destruction and maximize instrument access.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call