Abstract

A numerical study of the evolution of the multimode planar Richtmyer-Meshkov instability (RMI) in a light-heavy (air-SF6, Atwood number A = 0.67) configuration involving a Mach number Ma = 1.5 shock is carried out. Our results demonstrate that the initial material interface morphology controls the evolution characteristics of RMI (for fixed A, Ma), and provide a significant basis to develop metrics for transition to turbulence. Depending on initial rms slope of the interface, RMI evolves into linear or nonlinear regimes, with distinctly different flow features and growth rates, turbulence statistics, and material mixing rates. We have called this the bipolar behavior of RMI. Some of our findings are not consistent with heuristic notions of mixing in equilibrium turbulence: more turbulent flow—as measured by spectral bandwidth, can be associated with higher material mixing but, paradoxically, to lower integral measures of turbulent kinetic energy and mixing layer width.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.