Abstract

The theory of matching energy of graphs since been proposed by Gutman and Wagner in 2012, has attracted more and more attention. It is denoted by Bn,m, the class of bipartite graphs with order n and size m. In particular, Bn,n denotes the set of bipartite unicyclic graphs, which is an interesting class of graphs. In this paper, for odd n, we characterize the bipartite unicyclic graphs with the first ⌊n−34⌋ largest matching energies. There is an interesting correspondence: we conclude that the graph with the second maximal matching energy in Bn,n for odd n ≥ 11 is Pn6, which is the only graph attaining the maximum value of the energy among all the (bipartite) unicyclic graphs for n ≥ 16.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.