Abstract

26 S proteasomes fulfill final steps in the ubiquitin-dependent degradation pathway by recognizing and hydrolyzing ubiquitylated proteins. As the 26 S proteasome mainly localizes to the nucleus in yeast, we addressed the question how this 2-MDa multisubunit complex is imported into the nucleus. 26 S proteasomes consist of a 20 S proteolytically active core and 19 S regulatory particles, the latter composed of two subcomplexes, namely the base and lid complexes. We have shown that 20 S core particles are translocated into the nucleus as inactive precursor complexes via the classic karyopherin alphabeta import pathway. Here, we provide evidence that nuclear import of base and lid complexes also depends on karyopherin alphabeta. Potential classic nuclear localization sequences (NLSs) of base subunits were analyzed. Rpn2 and Rpt2, a non-ATPase subunit and an ATPase subunit of the base complex, harbor functional NLSs. The Rpt2 NLS deletion yielded wild type localization. However, the deletion of the Rpn2 NLS resulted in improper nuclear proteasome localization and impaired proteasome function. Our data support the model by which nuclear 26 S proteasomes are assembled from subcomplexes imported by karyopherin alphabeta.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.